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Summer warming explains widespread but not
uniform greening in the Arctic tundra biome
Logan T. Berner 1✉, Richard Massey 1, Patrick Jantz 1, Bruce C. Forbes 2, Marc Macias-Fauria 3,
Isla Myers-Smith 4, Timo Kumpula5, Gilles Gauthier 6, Laia Andreu-Hayles 7, Benjamin V. Gaglioti8,
Patrick Burns 1, Pentti Zetterberg9, Rosanne D’Arrigo7 & Scott J. Goetz 1

Arctic warming can influence tundra ecosystem function with consequences for climate

feedbacks, wildlife and human communities. Yet ecological change across the Arctic tundra

biome remains poorly quantified due to field measurement limitations and reliance on coarse-

resolution satellite data. Here, we assess decadal changes in Arctic tundra greenness using

time series from the 30m resolution Landsat satellites. From 1985 to 2016 tundra greenness

increased (greening) at ~37.3% of sampling sites and decreased (browning) at ~4.7% of

sampling sites. Greening occurred most often at warm sampling sites with increased summer

air temperature, soil temperature, and soil moisture, while browning occurred most often at

cold sampling sites that cooled and dried. Tundra greenness was positively correlated with

graminoid, shrub, and ecosystem productivity measured at field sites. Our results support the

hypothesis that summer warming stimulated plant productivity across much, but not all, of

the Arctic tundra biome during recent decades.
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The Arctic tundra biome is rapidly warming1 with funda-
mental consequences for climate feedbacks2, wildlife3, and
human communities4. Nevertheless, assessing the impacts

of climate change on tundra ecosystems throughout the Arctic
remains a significant challenge, as recently highlighted by the U.S.
National Academy of Sciences5. Multi-decadal field measure-
ments provide the most direct evidence of tundra response to
warming, but such studies are scarce across the Arctic, especially
in the Canadian and Eurasian Arctic6. Long-term field studies
that do exist document recent increases in plant cover, growth,
height, and biomass, and a shift towards shrub dominance in
some tundra ecosystems6–9, while other areas show little change
in vegetation10,11, or even warming-induced declines in plant
growth12,13. Diverse ecological responses to warming and the
paucity of long-term field measurements underscore the need for
effectively using Earth-observing satellites to assess ecological
changes that are occurring across one of Earth’s coldest but most
rapidly warming biomes.

Earth-observing satellites have been used to infer changes in
tundra greenness since the 1980s, but pan-Arctic assessments
historically relied on coarse spatial resolution satellite data sets
that exhibit notable discrepancies through time. The Normalized
Difference Vegetation Index (NDVI) provides a metric of tundra
greenness that can be derived from satellite observations and is
broadly related to tundra plant productivity14 and aboveground
biomass15,16. Pan-Arctic changes in NDVI since the 1980s have
been exclusively assessed with the Advanced Very High-
Resolution Radiometers (AVHRR)17. These satellites show
increasing NDVI (greening) across large parts of the Arctic, but
decreasing NDVI (browning) in several regions (e.g., Canadian
High Arctic). However, the prevalence and spatial patterns of
greening and browning differ considerably among AVHRR
NDVI data sets18. These discrepancies partially reflect challenges
with cross-calibrating sensors flown on 16 separate satellites18,19.
Furthermore, the coarse spatial resolution of AVHRR NDVI data
sets (typically ~8 km) far exceeds the scale of ecological change in
heterogeneous tundra landscapes10 and limits the ability to
attribute recent trends to potential landscape level drivers (e.g.,
permafrost thaw, wildfires). Moreover, the coarse spatial resolu-
tion makes it difficult to reconcile trends with field observa-
tions11. These issues require caution in analyses based on the
AVHRR satellites for pan-Arctic assessment of tundra response to
warming and underscore the need for assessments using higher-
resolution satellite observations that also extend back to
the 1980s.

The high-resolution Landsat satellites offer a promising
complement to the AVHRR satellites for assessing pan-Arctic
trends in tundra greenness and identifying factors that have
driven these changes. The Landsat satellites cover the same
period as AVHRR but with fewer satellites, which reduces but
does not eliminate challenges with cross-sensor calibration20.
Furthermore, the Landsat satellites provide 30 m resolution
observations that more closely match the scale of field mea-
surements and ecological change than AVHRR observations.
However, higher spatial resolution means that each location is
observed fewer times each growing season, which contributes to
the challenge of assessing vegetation phenology, especially since
the growing season is often short and cloudy in the Arctic21.
The high spatial resolution also increases data volume and thus
the Landsat satellites have typically been used for local assess-
ments of tundra greenness22–24, although recent advances in
computing25 and remote sensing26 have enabled regional to
continental assessments in the North American Arctic20,27.
Nevertheless, pan-Arctic changes in tundra greenness and their
relation to climate, permafrost, and fire have not been assessed
using the Landsat satellite series.

Here, we advance current understanding of recent changes in
tundra greenness across the Arctic tundra biome (Fig. 1) using
more than three decades of high-resolution Landsat satellite
imagery in concert with a broad suite of environmental and field
data sets. Specifically, we ask:

(1) To what extent did tundra greenness change during recent
decades in the Arctic?

(2) How closely did inter-annual variation in tundra greenness
track summer temperatures?

(3) Were tundra greenness trends linked with climate,
permafrost, topography, and/or fire?

(4) How closely did satellite observations of tundra greenness
relate to temporal and spatial variation in plant productivity
measured at field sites?

To characterize tundra greenness, we use the annual maximum
summer NDVI (NDVImax) derived from surface reflectance
measured by Landsat 5, 7, and 8. We first extract all available
summer Landsat data for 50,000 random sampling sites in the
Arctic using Google Earth Engine25 and then generate annual
time series of NDVImax for each vegetated sampling site. We
develop novel approaches to not only further cross-calibrate
NDVI among Landsat sensors, but also minimize biases asso-
ciated with estimating annual NDVImax when few summer
measurements were available. Estimates of annual NDVImax are
sensitive to sensor radiometric calibration, cross-sensor calibra-
tion, and modeling approach, thus we propagate these sources of
error and uncertainty in climate and field data sets through the
analysis using Monte Carlo simulations (n= 103). After esti-
mating annual NDVImax at each sampling site, we then assess
changes in tundra greenness and covariation with summer tem-
peratures from 1985 to 2016 and 2000 to 2016 using rank-based
trend tests and correlations in a Monte Carlo uncertainty fra-
mework. Moreover, we examine the extent to which tundra
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Fig. 1 Spatial extent of Arctic tundra and locations of field and Landsat
sample sites. a The Arctic can be subdivided into the minimally vegetated
High Arctic, moderately vegetated Low Arctic, and southern mountainous
Oro Arctic. Landsat NDVImax was compared against three metrics of plant
productivity measured at field sites around the Arctic. b, c Number of
Landsat sampling sites within a 50 × 50 km2 grid cell that were used for
assessing NDVImax trends and correlations with summer temperatures
from 1985 to 2016 and 2000 to 2016. It was not possible to assess
NDVImax trends or correlations in the eastern Eurasian Arctic from 1985 to
2016 owing to the lack of Landsat data prior to circa 2000. Arctic tundra
without adequate data for Landsat assessment is shown in black.
Projection: Lambert Azimuthal Equal Area.
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greenness trends from 2000 to 2016 were linked with summer
temperature, soil moisture, permafrost, topography, land cover,
and fire using geospatial data sets and machine learning. Last, we
compare Landsat observations of tundra greenness against three
metrics of plant productivity at field sites across the Arctic. It is
important to note that Landsat observations sufficient for time
series analysis were available for ~64% and ~96% of the Arctic
domain from 1985 to 2016 and 2000 to 2016, respectively, with
particularly improved coverage across the eastern Eurasian Arctic
during the more recent period (Fig. 1b, c). Our analysis reveals
extensive but not uniform greening in the Arctic tundra biome
during recent decades that tended to occur in warm areas
with increasing summer air temperature, soil temperature, and
soil moisture. Our findings are consistent with the hypothesis
that summer warming stimulated plant productivity across
much of the Arctic tundra biome during recent decades, which
has consequences for climate feedbacks, wildlife, and human
communities.

Results
Greening and warming of the Arctic tundra biome. Our ana-
lysis of Landsat NDVImax and climatic data showed strong
increases in average tundra greenness and summer air tem-
peratures during the past three decades in the Arctic and
constituent Arctic zones (Fig. 2 and Supplementary Table 2).
Mean Arctic NDVImax increased 7.3 [7.0, 7.7]% from 1985 to
2016 and 3.6 [3.4, 3.7]% from 2000 to 2016 [95% Monte Carlo
confidence intervals]. Changes in mean NDVImax from 1985 to
2016 were considerably higher in the Low Arctic and Oro
Arctic than the High Arctic; however, the High Arctic
experienced the highest percent increase in mean NDVImax

from 2000 to 2016 (Supplementary Table 2). These positive
trends in mean NDVImax indicate systematic greening of the
Arctic tundra biome during the past three decades.

Greening of the Arctic occurred in concert with a rapid
increase in summer air temperatures over the past three decades.
We quantified summer temperatures with the summer warmth
index (SWI) computed as the annual sum of mean monthly air
temperatures >0 °C (units: °C)28 using an ensemble of five
temperature data sets. The mean Arctic SWI increased 5.0 [4.9,
5.1] °C from 1985 to 2016 and 2.5 [2.3, 2.7] °C from 2000 to 2016,
with warming evident in each Arctic zone (Fig. 2b, e and
Supplementary Table 6). Annual mean Arctic NDVImax and SWI
anomalies were positively correlated from 1985 to 2016 (Spear-
man’s correlation [rs]= 0.68 [0.66, 0.70]) and 2000 to 2016 (rs=
0.76 [0.73, 0.78]; Fig. 2c, f), particularly when SWI was averaged
over the current and preceding year (rs= 0.86 [0.85, 0.88] and
0.89 [0.88, 0.91], respectively). Correlations were weaker, but still
positive, when each time series was linearly detrended (Supple-
mentary Table 7). For instance, the correlations between annual
NDVImax and SWI decreased to 0.43 [0.41, 0.47] and 0.39 [0.33,
0.46] for the periods 1985 to 2016 and 2000 to 2016, respectively.
Positive NDVImax–SWI correlations were also evident in each
Arctic zone (Supplementary Table 7). The lowest mean Arctic
NDVImax occurred in 1992 following acute cooling caused by the
massive eruption of Mount Pinatubo29, whereas the highest mean
Arctic NDVImax occurred during record-setting warm summers
in 2012 and 2016. Strong positive NDVImax trends and
NDVImax–SWI correlations during a period of rapid warming
suggest that reductions in temperature limitations on biological
and/or biogeochemical processes could have contributed to recent
increases in tundra greenness in the Arctic tundra biome.
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Fig. 2 Tundra greenness and summer air temperature time series and covariation. Left panels show changes in mean Landsat NDVImax [unitless]
anomalies for the Arctic and each zone from 1985 to 2016 (a) and 2000 to 2016 (d). Middle panels show changes in mean summer warmth index [SWI; °C]
anomalies from 1985 to 2016 (b) and 2000 to 2016 (e) derived from five temperature data sets. Right panels show the relationship between mean Arctic
NDVImax and SWI anomalies from 1985 to 2016 (c) and 2000 to 2016 (f). Spearman’s correlation coefficients (rs) relating NDVImax and SWI are provided
for each period. Narrow error bands and whiskers depict 95% confidence intervals derived from Monte Carlo simulations (n= 103). Note that while mean
SWI time series are based on pan-Arctic data, the NDVImax time series, and NDVImax–SWI relationships are based on sites where Landsat data were
available from 1985 to 2016 (a, c) and 2000 to 2016 (d, f), as shown in Fig. 1.
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Spatial variability and drivers of tundra greenness trends. Our
biome-scale analysis indicated an overall greening of the Arctic
tundra biome that closely corresponded with summer warming in
recent decades; however, tundra greenness was stable or even
declined in some areas and inter-annual variability in tundra
greenness was often weakly related to summer temperatures at
individual sampling sites. Landsat NDVImax increased (critical
value [α]= 0.10; greening) at 37.3 [36.3, 38.4]% of sampling sites
[95% Monte Carlo confidence interval] and decreased (α= 0.10;
browning) at 4.7 [4.4, 5.2]% of sites from 1985 to 2016, although
exhibited no trend at 58.0 [57.1, 58.7]% of sampling sites (Fig. 3a
and Supplementary Table 3). Similarly, greening occurred at 21.3
[20.8, 21.7]% of sampling sites and browning at 6.0 [5.8, 6.3]% of
sampling sites from 2000 to 2016 (Fig. 3c). Greening was thus 7.9
[7.1, 8.7] and 3.6 [3.4, 3.8] times more common than browning
during these two periods and occurred at a higher percentage of
sites in the Oro Arctic and Low Arctic than in the High Arctic
(Fig. 3a, c). There was extensive greening in parts of western
Eurasia (e.g., Gydan Peninsula and southern Yamal Peninsula)
and North America (e.g., Ungava Peninsula, Northwest Terri-
tories, and northwestern Nunavut) from 1985 to 2016. The
increase in availability of observations from 2000 to 2016 also
revealed extensive greening in eastern Eurasia (e.g., Chukotka and
mountains of Yakutia; Fig. 4a, e). Although browning was much
less common than greening, it was evident at sampling sites
widely distributed across the domain and occurred at a slightly
higher percentage of sites in the High Arctic and Oro Arctic than
the Low Arctic (Figs. 3 and 4). Annual NDVImax and SWI were
positively correlated (α= 0.10) at 28.2 [27.3, 29.1]% of sampling
sites (rs= 0.41 ± 0.06; mean ± 1 SD) and negatively correlated
(α= 0.10) at 1.0 [0.8, 1.1]% of sampling sites (rs=−0.40 ± 0.06;
Fig. 3b) from 1985 to 2016, with positive NDVImax–SWI corre-
lations at 41.0 [39.5, 42.5]% of sampling sites that greened and
negative correlations at 6.5 [5.0, 8.0]% of sampling sites that

browned. There was a lower frequency of significant correlations
between annual NDVImax and SWI from 2000 to 2016. Overall,
greening was prevalent and often associated with summer tem-
peratures in the Oro Arctic and Low Arctic, while browning was
uncommon, but widely distributed.

To further explore potential drivers of changes in tundra
greenness among sampling sites, we constructed Random Forest
models to associate the NDVImax trend category from 2000 to 2016
(i.e., browning, no trend, or greening) with climate, permafrost,
land cover, topography, and fire (Supplementary Table 8). Cross-
validated model classification accuracy was 55 [53, 58]%, but the
classification accuracies for greening and browning classes were 70
[68, 73]% and 73 [70, 75]%, respectively (Supplementary Tables 9
and 10). The expected classification accuracy at random would be
33.3%. The six most important predictor variables included change
in SWI (2000–2016), annual mean soil temperature (1m depth),
and SWI in the early 2000s, elevation, change in minimum summer
soil moisture (2000–2016), and change in annual mean soil
temperature (2003–2016; Fig. 5a). Greening occurred more often
at warm, high-elevation sampling sites with increased summer air
temperatures, annual mean soil temperatures, and summer soil
moisture. Conversely, browning occurred more often at cold, low-
elevation sampling sites with decreased summer air temperatures,
annual mean soil temperatures, and summer soil moisture (Fig. 5b).
A notable exception was the sharp decline in greening and increase
in browning where soil temperatures in the early 2000s exceeded
0 °C. It is also notable that at a pan-Arctic scale recent fires were not
an important predictor of greening or browning, reflecting the
fact that fires occurred at only ~1.1 % of sampling sites from 2001
to 2016.

Covariation of tundra greenness and plant productivity. To
validate interpretation of recent greening and browning trends,
we compared Landsat NDVImax against several metrics of spatial
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and temporal variability in plant productivity at field sites around
the Arctic (Fig. 1 and Supplementary Fig. 7). The plant pro-
ductivity metrics included graminoid aboveground net primary
productivity (ANPP; g dry matter m−2 year−1) estimated from
clip harvests, shrub ring-width indices (RWIs; unitless) derived
from measurements of annual stem radial growth, and ecosystem
gross primary productivity (GPP; g Cm−2 year−1) estimated
from measurements by eddy covariance flux towers. We found
annual landscape median NDVImax and graminoid ANPP were
positively correlated from 1990 to 2017 at a long-term monitoring
site on Bylot Island in far northern Canada (rs= 0.43 [0.24, 0.58];
Supplementary Fig. 8). Moreover, the NDVImax–ANPP relation-
ship was stronger when NDVImax was averaged over the two
preceding years (rs= 0.68 [0.55, 0.78]; Supplementary Fig. 8). We
also examined the temporal correspondence between annual
detrended NDVImax and 22 shrub RWI chronologies representing
alder (Alnus spp.), willow (Salix spp.), and dwarf birch (Betula
spp.) in six Arctic countries. The NDVImax–shrub RWI correla-
tions (rs) ranged from −0.12 [−0.33, 0.04] to 0.84 [0.72, 0.93]
with a median rs of 0.42 [0.34, 0.50] among chronologies (Sup-
plementary Fig. 9 and Supplementary Table 11). Last, we found a
positive correlation between spatial patterns of median annual
NDVImax and GPP across 11 flux tower sites that were part of the
Arctic Observing Network or FLUXNET (rs= 0.72 [0.54, 0.88];
Supplementary Fig. 10). This suite of comparisons shows Landsat
NDVImax positively corresponds with metrics of graminoid,
shrub, and ecosystem productivity either through time or across
tundra ecosystems.

Discussion
We provide here a pan-Arctic assessment of changes in tundra
greenness using high-resolution Landsat NDVImax and evaluate
links between tundra greenness and field measurement of plant
productivity. We found widespread greening in recent decades
that was linked with increasing summer air temperatures, annual

soil temperatures, and summer soil moisture; however, tundra
greenness had no significant trend in many areas and even
declined in others. Our assessment relied on carefully cross-
calibrated and phenologically modeled estimates of NDVImax that
we show were positively correlated with temporal and spatial
variability in tundra plant productivity (i.e., graminoid ANPP,
shrub radial growth, and ecosystem GPP; see Supplementary
Discussion). Prior regional studies related positive trends in
Landsat NDVI with increasing tundra shrub cover23,30 and spa-
tial variability in Landsat NDVI with tundra plant aboveground
biovolume31 and biomass16. Consequently, we interpret the
observed tundra greening as evidence that plant productivity,
height, biomass, and potentially shrub dominance increased since
the 1980s in large parts of the Arctic in response to recent
summer warming. This interpretation of tundra greening is
broadly supported by changes in vegetation observed by Inuit
communities in northeastern Canada32 and Nenet herders in
northwestern Russia33, as well as documented by long-term field
surveys6–8, dendroecology10,34, and high-resolution remote
sensing35,36 at sites around the Arctic. Nevertheless, attribution of
local tundra greening to specific biological changes and envir-
onmental drivers remains an important challenge that will require
further mapping and modeling of potential drivers at higher
spatial and thematic resolution, coupled with field measurements,
across the Arctic.

While our Landsat analysis revealed an increase in mean Arctic
NDVImax that broadly supports biome-scale changes inferred
using coarser-resolution AVHRR (1982 onward at ~8 km reso-
lution) and MODIS (2000 onward at 500 m resolution) data sets,
it also highlights inconsistencies among satellites17,18,37. For
instance, we report a 7.9 [7.1, 8.7]:1 ratio of greening to browning
from 1985 to 2016. On the other hand, recent analyses of AVHRR
(GIMMS3g) data suggested ratios of 29:1 and 14:1 from 1982 to
200818 and 1982 to 201438, respectively, while analysis of MODIS
data suggested a ratio of 13:1 from 2000 to 201837. Different time
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Fig. 4 Tundra greenness and summer air temperature trends and correlations across the Arctic. Top panels (a–d) depict Landsat NDVImax trends,
summer warmth index (SWI) trends, and NDVImax–SWI correlations from 1985 to 2016, while bottom panels (e–h) depict trends and correlations from
2000 to 2016. Trends in tundra greenness were inferred at random sampling sites (Fig. 1b, c) using NDVImax time series and Mann–Kendall trend tests.
The percent of sites with positive (a, e) and negative (b, f) trends [α= 0.10] was summarized within 50 × 50 km2 grid cells. c, g Changes in annual SWI
derived using an ensemble of five temperature data sets. d, hMean Spearman’s correlation (rs) between annual NDVImax and SWI among sites within each
50 × 50 km2 grid cell. The maps also depict areas in the Arctic that are barren [mean NDVImax < 0.10; dark gray] or lacked adequate Landsat data for trend
and correlation assessments [black].
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periods, spatial domains, and NDVI metrics hinder direct com-
parison among these studies, but these initial comparisons sug-
gest that Landsat either detects less greening and/or more
browning relative to AVHRR (GIMMS3g) and MODIS.

Compared to AVHRR or MODIS, high-resolution Landsat
observations may be especially advantageous when assessing
vegetation dynamics in heterogeneous tundra landscapes37 where
micro- and macro-topography shape plant communities that are
often interspersed with surface water, snow, and barren
ground16,37,39. Patches of greening and browning can occur in
close proximity on a landscape, leading coarse-resolution obser-
vations to integrate divergent trajectories of change20,37. Conse-
quently, local browning could be obscured by widespread stability
or greening on a landscape when viewed at coarse resolution.
Similarly, a predominantly stable landscape could be perceived as
greening at coarse resolution given enough hotspots of change.
The spatial scale of Landsat imagery is much closer to the relevant
scales of ecological processes than AVHRR or MODIS and thus
potentially captures ecological stability and change in a more
realistic way. However, the utility of Landsat is constrained by the

lack of observations in parts of the Arctic (e.g., eastern Eurasia)
prior to 2000 and by the lower frequency of observations acquired
each summer, which we partially addressed by modeling annual
NDVImax with site-specific information on land surface phenol-
ogy. Newer satellites (e.g., Sentinel-2, Planet, Worldview-3) and
unmanned aerial vehicles40 can facilitate higher-resolution map-
ping of tundra properties and could be combined with decades of
Landsat observations to better understand recent changes in
Arctic tundra.

Regional consistencies and inconsistencies were evident among
Landsat, AVHRR, and MODIS satellite time series. For example,
these satellite time series consistently show extensive greening in
the eastern Eurasian Arctic, providing evidence of recent ecolo-
gical change across a large region underlain by continuous per-
mafrost that has little to no long-term, ground-based ecosystem
monitoring6,41. On the other hand, our study and prior regional
Landsat assessments20,22 show pronounced greening in northern
Quebec, where AVHRR and MODIS suggest modest greening.
Greening in this region is likely associated with observed
increases in graminoid and shrub cover, particularly of dwarf
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birch (Betula glandulosa)22,36. Our Landsat analysis also indicated
recent browning along the rugged southwestern coast of Green-
land that is consistent with local declines in shrub growth12, but
not evident in assessments that used AVHRR or MODIS. The
link between recent browning and declining shrub growth is
further supported by the positive correlations that we found
between annual Landsat NDVImax and stem radial growth of
grayleaf willow (Salix glauca; rs= 0.60 [0.39, 0.78]) and dwarf
birch (Betula nana; rs= 0.61 [0.45, 0.74]) in this region (Sup-
plementary Table 12). Overall, the Landsat, AVHRR, and MODIS
satellites show extensive greening and modest browning in the
Arctic tundra biome during recent decades; however, regional
discrepancies in greening and browning highlight the need for
rigorous comparisons among satellites and between satellite and
field measurements.

We found no trend in tundra greenness at most locations,
despite pervasive increases in summer air temperatures. It is
possible that indirect drivers of vegetation change, such as per-
mafrost thaw and nutrient release, are accumulating in response
to warming of summer air temperatures, or that plants are limited
by other environmental constrains. Low soil temperatures,
nutrients, and moisture can limit plant response to rising air
temperatures10,42, as can strong genetic adaptation to prevailing
environmental conditions43. In other cases, warming might have
stimulated plant growth, but led to no change in tundra greenness
due to grazing, browsing, and trampling by herbivores. Field44
and modeling45 studies show that herbivory can significantly
suppress tundra response to warming, although effects of verte-
brate and invertebrate herbivores on Arctic greening and
browning remain unclear. Last, tundra greenness could, in some
areas, be confounded by patchy vegetation being interspersed
with bare ground, surface water, or snow24,37. Despite limitations
with NDVI (e.g., see ref. 37 for recent tundra-specific review), our
results indicate Arctic plants did not universally benefit from
warming in recent decades, highlighting diverse plant community
responses to warming likely mediated by a combination of biotic
and abiotic factors.

Our analysis showed that tundra browning occurred at a small
percentage (~5%) of sampling sites during recent decades, and
athough uncommon, it was widely distributed in the Arctic.
Inter-annual variability in tundra greenness and summer air
temperatures were negatively correlated at only ~6% of sites that
browned, suggesting little direct link between warming and
browning on an annual time scale. Our Landsat analysis did
detect browning in western Greenland from 2000 to 2016 that
aligns with field studies showing recent declines in deciduous
shrub growth due to warming-induced drought stress12,13, as well
as defoliation from moths (Eurois occulta) and increased brows-
ing by muskoxen (Ovibos moschatus)12. On the other hand, we
found that browning from 2000 to 2016 was most probable at
sampling sites where summer air temperature, annual soil tem-
perature, or summer soil moisture decreased; however, cooling
and drying infrequently occurred in the Arctic during the 2000s.
Cooler and drier conditions could suppress tundra plant growth
and have contributed, for instance, to recent tundra browning
detected by Landsat in parts of the Yablonovy Mountains near
Lake Baikal in central Siberia. Other potential drivers of browning
in the Arctic include local changes in surface hydrology (wetting
or drying) associated with permafrost degradation46–48, extreme
weather events49,50, and industrial development24,51. In con-
currence with terrestrial biosphere models29,52, our analysis
suggests that warming tended to promote rather than suppress
plant productivity and biomass in the Arctic during recent dec-
ades, but increasing frequency of permafrost degradation,
extreme weather events, pest outbreaks, and industrial develop-
ment could contribute to future browning49.

Tundra fires are another contributor to greening and browning
in the Arctic53; however, our results indicate that their con-
tribution is currently quite small at a pan-Arctic extent due to
their infrequent occurrence. Examining MODIS satellite obser-
vations54 from 2001 to 2016, we found that 1.1% of sampling sites
burned over the 16 years period, which suggests a current fire
rotation of ~1450 years for the Arctic tundra biome. Regional fire
rotation within the biome is strongly governed by summer cli-
mate and is considerably shorter (~425 years) in the warmest and
driest tundra regions (e.g., Noatak and Seward, Alaska)53,55. Our
analysis further showed that fires recently occurred at ~1.0% of
sampling sites that greened and ~2.4% of sampling sites that
browned. Tundra fires can emit large amounts of carbon into the
atmosphere56 and lead to temporary browning by burning off
green plants, while subsequent increases in soil temperature and
permafrost active layer depth can stimulate a long-term increase
in plant growth and shrub dominance in some but not all
cases53,57,58. Continued warming will likely increase annual area
burned in the tundra biome55; thus, fires could become a more
important driver of tundra greening and browning in the Arctic
over the twenty-first century.

Our analysis contributes to a growing body of evidence
showing recent widespread changes in the Arctic environment
that can impact climate feedbacks. Rising temperatures are likely
stimulating carbon uptake and storage by plants in areas that are
greening (negative climate feedback), but also leading to soil
carbon loss by thawing permafrost and enhancing microbial
decomposition (positive climate feedback)59,60. Moreover,
greening can reduce surface albedo as plants grow taller and
leafier (positive climate feedback)61,62 while also affecting soil
carbon release from permafrost thaw by altering canopy shading
and snow-trapping (mixed climate feedbacks)63. The net climate
feedback of these processes is currently uncertain; thus, our
findings underscore the importance of future assessments with
Earth system models that couple simulations of permafrost,
vegetation, and atmospheric dynamics at moderately high spatial
resolution.

Widespread tundra greening can also affect habitat suitability
for wildlife and semi-domesticated reindeer, with consequences
for northern subsistence and pastoral communities. As an
example, moose64 and beavers65 recently colonized, or recolo-
nized, increasingly shrubby riparian habitats in tundra ecosys-
tems of northern Alaska and thus appear to be benefiting from
recent tundra greening. Conversely, caribou populations in the
North American Arctic could be adversely affected if warming
stimulates vascular plant growth at the expense of lichens, an
important winter forage66. In the western Eurasian Arctic, indi-
genous herders (e.g., Sami, Nenets) manage about two million
semi-domesticated reindeer on tundra rangelands. Shrub growth,
height, and biomass significantly increased on these rangelands in
recent decades, while lichen cover and biomass declined mostly
due to trampling during the snow-free period34,51,67. Our Landsat
analysis showed tundra greening in regions with potential moose,
beaver, caribou, and reindeer habitat and demonstrated that
variability in tundra greenness was often associated with annual
shrub growth in these regions (Supplementary Table 12). Many
northern communities rely on subsistence hunting or herding
and thus changes in wildlife or herd populations can influence
food security4,68 and dietary exposure to environmental con-
taminants69. By documenting the extent of recent greening,
analyses such as ours can help identify where wildlife and
northern communities might be most impacted by ongoing
changes in vegetation.

In summary, we assessed pan-Arctic changes in tundra
greenness using high spatial resolution Landsat satellite obser-
vations and found evidence to support the hypothesis that recent
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summer warming contributed to increasing plant productivity
and biomass across substantial portions of the Arctic tundra
biome during the past three decades. Nevertheless, we also
document summer warming in many areas that did not become
greener. The lack of greening in these areas points towards lags in
vegetation response and/or to the importance of other factors in
mediating ecosystem response to warming. Sustained warming
may not drive persistent greening in the Arctic over the twenty-
first century for several reasons, particularly hydrological changes
associated with permafrost thaw, drought, and fire. Overall, our
high spatial resolution pan-Arctic assessment highlights tundra
greening as a bellwether of global climatic change that has wide-
ranging consequences for life in northern high-latitude ecosys-
tems and beyond.

Methods
Generating annual Landsat NDVImax time series. We developed annual esti-
mates of maximum summer NDVI70 from 1985 to 2016 (NDVImax) for
50,000 sampling sites in Arctic tundra71 using 30 m resolution measurements of
surface reflectance from the Landsat satellites (Landsat Collection 1)72,73. We first
buffered each site by 50 m (radius) and then used the Google Earth Engine25
Python74 interface to extract all Landsat 5, 7, and 8 surface reflectance measure-
ments acquired June through August from 1984 to 2016. This yielded 507 million
multi-band surface reflectance measurements, of which 112 million (28%) were
considered to be useable clear-sky measurements based on the CFmask
algorithm26,75 and scene criteria. We then used these clear-sky measurements to
estimate annual NDVImax while considering multiple sources of uncertainty.
Estimates of annual NDVImax are sensitive to radiometric calibration uncertainty
and systematic differences in NDVI among Landsat sensors, as well as to the
availability and seasonal timing of measurements. We therefore developed new
techniques to further cross-calibrate NDVI among sensors and model annual
NDVImax. Furthermore, we characterized uncertainty in our estimates of annual
NDVImax using Monte Carlo simulations. These new techniques and the uncer-
tainty analysis are briefly described below and in greater detail in the Supple-
mentary Methods.

There are systematic differences in NDVI among Landsat 5, 7, and 8
(Supplementary Fig. 1) and failure to address these differences can introduce
artificial positive trends into NDVI time series that are based on measurements
from multiple sensors20,76,77. Cross-calibration models have been developed for
other biomes20,76,77, but not for Arctic tundra. We initially explored cross-
calibrating sensors using linear regression, but found non-linearities that led us to
develop a novel approach using machine learning algorithms that calibrated
Landsat 5/8 to Landsat 7. Specifically, for each sampling site, we (1) identified the
years when both sensors (i.e., Landsat 5/8 and Landsat 7) collected imagery, (2)
computed 15-day moving median NDVI across the growing season for each sensor
using measurements pooled across years, and (3) then randomly selected NDVI
from one 15-day period with at least five observations from both sensors. We then
used data from 2/3rd of sites to train Random Forest models78 that predicted
Landsat 7 NDVI based on Landsat 5/8 NDVI, while withholding data from the
other 1/3rd of sites for cross-validation. The models also accounted for potential
seasonal and regional differences between sensors by including as covariates the
midpoint of each 15-day period (day of year) and the spatial coordinates of each
site. We fit the Random Forest models using the ranger package79 in R and
evaluation of the models showed they had high predictive capacity (r2 ≈ 0.97) as
well as low root mean-squared error and bias (Supplementary Fig. 1 and
Supplementary Table 1). We therefore applied these models to cross-calibrate
NDVI among sensors at the full set of sampling sites.

We inferred tundra greenness using estimates of annual NDVImax derived from
the Landsat satellites; however, raw estimates of NDVImax are sensitive to the
availability and seasonal timing of clear-sky measurements acquired each summer,
particularly when few measurements are available. There were typically few clear-
sky summer measurements at each Arctic sampling site during the 1980s and 1990s
when only Landsat 5 was operating; however, observations became increasingly
available during the 2000s following the launches of Landsat 7 and 8
(Supplementary Fig. 2). For instance, there was a median of 0, 2, 4, and 7 clear-sky
summer scenes per sampling site in 1985, 1995, 2005, and 2015. As the number of
clear-sky measurements increases, so does the likelihood of acquiring a
measurement during the period of peak summer greenness. Consequently, we
found that raw estimates of NDVImax increased asymptotically with the number of
clear-sky measurements available each summer (Supplementary Fig. 3), which
introduced a spurious positive trend into raw NDVImax time series given the
increase in observations through time. We therefore developed a phenology-based
approach to more reliably estimate NDVImax when few clear-sky summer
measurements were available. Our approach involved modeling seasonal land
surface phenology at each site for every 17-year period between 1985 to 2016 and
then predicting annual NDVImax using individual summer measurements in
tandem with information on phenology during the corresponding period

(Supplementary Fig. 4). The Landsat record is limited in much of the Arctic prior
to the 2000s, thus using a 17-year window allowed us to pool measurements across
this era of sparse observations when estimating annual NDVImax. Specifically, for
each site we quantified land surface phenology from spring through fall by
predicting daily NDVI using flexible cubic splines fit to all clear-sky measurements.
We then estimated annual NDVImax at each site by adjusting individual summer
measurements based on the timing of acquisition relative to peak summer
greenness (i.e., NDVImax). A conceptually similar approach was previously used to
examine inter-annual variability in the start and end of the growing season in
deciduous forests of eastern North America80. Subsequent assessment showed that
our modeled estimates of annual NDVImax were less biased than raw estimates of
annual NDVImax when few summer measurements were available (Supplementary
Fig. 3).

Several sources of uncertainty affect estimates of annual NDVImax and thus we
propagated uncertainty into subsequent analyses using Monte Carlo simulations.
This involved generating 103 simulations of the annual NDVImax time series for
every sampling site. For each simulation, we randomly varied measurements of red
and near-infrared reflectance by up to ±7%, 5%, or 3% depending on whether
measurements were from Landsat 5, 7, or 8, respectively81,82. We then estimated
NDVI using each perturbed measurement of red and near-infrared reflectance.
Afterwards, we cross-calibrated NDVI among sensors with a unique set of Random
Forest models. Next, we estimated annual NDVImax at each site by fitting cubic
splines of varying smoothness, implemented by randomly varying the smoothing
parameter over a range of reasonable values (spar= 0.68–0.72). Overall, this
process propagated several important sources of error and uncertainty into
subsequent analysis, thus allowing us to more rigorously estimate greening and
browning trends across the Arctic.

Assessing Landsat NDVImax trends. We assessed temporal trends in annual
Landsat NDVImax during recent decades using measurements from sampling sites
across the Arctic. We first excluded sampling sites that were barren (mean
NDVImax < 0.10) or had short measurement records (<10 years) and then assessed
temporal trends in NDVImax for each remaining sampling site (n= 41,884) as well
as after averaging NDVImax time series across sampling sites in each bioclimatic
zone and the Arctic. Justification for the sample size of 50,000 locations is provided
in the Supplementary Methods (Supplementary Table 4 and Supplementary Fig. 5).
We evaluated each time series for the presence of a monotonic trend using a rank-
based Mann–Kendall trend test83 and determined the slope of each time series
using a non-parametric Theil–Sen slope estimator84 as implemented using the zyp
package85 in R86. This approach for robust trend assessment accounts for potential
temporal autocorrelation and has been used in prior studies that evaluated changes
in NDVI at high latitudes18,41. We classified sites with a positive NDVImax trend
(α= 0.10) as greening or a negative NDVImax trend (α= 0.10) as browning. Fur-
thermore, we accounted for how trends were affected by uncertainty in estimates of
annual NDVImax by computing every trend using each of the 103 Monte Carlo
simulations of annual NDVImax at every sampling site. We computed the median
percentage of sites that greened or browned across all simulation and derived 95%
confidence intervals using the 2.5th and 97.5th percentile of all simulations

Summer air temperature data sets and analyses. We assessed recent changes in
summer air temperatures across the Arctic, as well as inter-annual covariation
between summer temperatures and tundra greenness. Specifically, we characterized
annual cumulative summer heat load using the SWI28 derived from an ensemble of
five global temperature data sets87–91 re-gridded at 50 km resolution (Supple-
mentary Table 5). The SWI is computed as the annual sum of mean monthly air
temperatures exceeding 0 °C and is commonly used as an indicator of cumulative
heat load in the Arctic16,17,28. Estimates of annual SWI differ among temperature
data sets and thus to account for this uncertainty we performed a series of Monte
Carlo simulations (n= 103). For each simulation, we generated a stack of annual
synthetic SWI rasters built by randomly selecting grid cell values from the five
temperature data sets. In other words, each grid cell of a synthetic raster was
assigned a value for SWI that was randomly selected from the corresponding grid
cell of one of the five temperature data sets. We then used this collection of
synthetic SWI rasters to assess temporal trends in SWI as well as correlations
between SWI and NDVImax.

We assessed changes in summer temperatures using the synthetic SWI raster
data sets and non-parametric trend tests in a Monte Carlo uncertainty framework.
Specifically, for each of the 103 Monte Carlo simulations, we evaluated SWI trends
from 1985 to 2016 and 2000 to 2016 using non-parametric Mann–Kendall trend
tests and Theil–Sen slope estimators as implemented by the zyp package85 in R86.
We assessed SWI trends for each 50 × 50 km2 grid cell and Landsat sampling site,
as well as after averaging SWI among grid cells in each bioclimatic zone and across
the Arctic domain (Supplementary Table 6). We report the median change across
all simulations as our best estimate of each trend and a 95% confidence interval
computed from the 2.5th and 97.5th percentiles of these simulations.

We assessed the temporal correspondence between annual Landsat NDVImax
and SWI from 1985 to 2016 and 2000 to 2016 at multiple spatial scales using rank-
based rs in a Monte Carlo uncertainty framework. Specifically, we computed
NDVImax–SWI correlations for individual sampling sites and after averaging
annual NDVImax and SWI time series among sites in each bioclimatic zone and
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across the Arctic domain. Moreover, we assessed NDVImax–SWI correlations using
current and 2-year average SWI, as well as after linearly detrending the time series.
Uncertainty in NDVImax and SWI can influence their association and thus we
evaluated each correlation 103 times by randomly pairing Monte Carlo simulations
of each metric. We present the median rs of all simulations as our best estimate for
each NDVImax–SWI correlation and report a 95% confidence interval derived from
the 2.5th and 97.5th percentile of all rs simulations. The NDVImax–SWI
correlations for each zone are summarized in Supplementary Table 7, while spatial
patterns of these correlations are summarized in Supplementary Fig. 6.

Evaluating potential drivers of changes in tundra greenness. To explore
potential drivers of changes in tundra greenness among sampling sites, we con-
structed Random Forest models92 to predict the NDVImax trend class from 2000 to
2016 (i.e., browning, no trend, greening) based on environmental characteristics
related to climate, permafrost, land cover, fire, and topography (Supplementary
Table 8). We focused on 2000 to 2016 (rather than 1985 to 2016) given the more
extensive spatial cover of Landsat and greater availability of predictor data sets
during more recent years. Time series predictors included the ensemble SWI and
minimum summer soil moisture93 from 2000 to 2016, as well as permafrost
extent94, annual mean soil temperature (1 m depth)95, and annual maximum active
layer thickness96 from 2003 to 2016. The permafrost data sets did not extend before
2003. We included both the linear change over time and model-fit starting value as
predictors. Additional predictors included thermokarst vulnerability97, ESA land
cover98, MODIS burned area (2001–2016)54, and five topographic predictors
(elevation, slope, aspect, topographic roughness, topographic position) derived
from the TanDEM-X 90m Digital Elevation Model99 (© DLR 2020). All together,
we included 20 predictor variables in the Random Forests.

We constructed a separate Random Forest model for each of the 103 Monte
Carlo simulations. For every simulation, we classified the NDVImax trend at each
sampling site as browning, no trend, greening based on the slope and significance
(α= 0.10) of NDVImax change from 2000 to 2016. The frequency of each trend
class was highly skewed towards sites with no trend or greening and thus we
balanced the sample size among trend class by determining the number of
browning sampling sites and then randomly selecting the same number of no trend
and greening sampling sites. We then screened highly correlated variables (r > 0.75)
by computing pair-wise correlations and removing the variable with highest
average absolute correlation. Next, we randomly partitioned the data set into sets
for model training (2/3rd) and evaluation (1/3rd), and then repeatedly fit (i.e.,
tuned) Random Forest models to optimize out-of-bag classification accuracy by
varying the number of variables assessed at each tree node. We selected the
Random Forest model with the highest out-of-bag classification accuracy and then
re-assessed the classification accuracy using the data withheld for model evaluation
(Supplementary Tables 9 and 10). Last, we computed variable importance based on
the mean decrease in accuracy metric and generated partial dependency plots to
assess how class-specific classification probabilities varied across the range of each
predictor while holding all other predictors at their average value. Model
construction and evaluation were accomplished using functions from the
randomForest78, caret100, and pdp101 packages in R.

Comparisons between Landsat NDVImax and plant productivity. To aid in
interpreting Landsat NDVImax trends, we compared NDVImax with three metrics of
tundra plant productivity derived from field measurements at sites across the
Arctic (Supplementary Figs. 1 and 7). The metrics of annual plant productivity
included graminoid ANPP (g dry matter m−2 year−1), shrub RWIs (unitless), and
ecosystem GPP (g Cm−2 year−1). For each comparison, we incorporated uncer-
tainty in both remote sensing and field data sets using Monte Carlo simulations.
We briefly describe each comparison below and include additional details in the
Supplementary Methods.

We assessed the temporal correspondence between annual Landsat NDVImax
and graminoid ANPP from 1990 to 2017 on Bylot Island in northern Canada
(Supplementary Fig. 7a)8. Graminoid ANPP has been monitored each year as part
of a long-term study focused on Arctic food chains and was quantified by annually
clip harvesting live aboveground biomass from 11 to 12 quadrats (20 × 20 cm2) in
the study site. We developed annual NDVImax time series for four subsites and then
assessed the relationship between annual median NDVImax and ANPP from 1990
to 2017 using rs in a Monte Carlo uncertainty framework (n= 103 simulations).
Each simulation randomly perturbed both NDVImax and ANPP data sets and
utilized data from a random subset (90%) of years. We also explored multi-year
and lagged relationships between NDVImax and ANPP.

We assessed the temporal correspondence between annual Landsat NDVImax
and shrub growth using 22 shrub RWI chronologies from sites in six Arctic
countries (Supplementary Fig. 7b and Supplementary Table 11). The shrub RWI
chronologies are a proxy for inter-annual variability in shrub productivity and in
some cases may co-vary with broader plant community productivity102. We used
new and archived measurements of alder (Alnus spp.), willow (Salix spp.), and
birch (Betula spp.) annual ring width from independent projects10,12,34,67,
including measurements previously collated as part of the ShrubHub shrub ring
database42. We generated a detrended and standardized median shrub RWI
chronology for each shrub genera at a site using the dplR103 package in R. We also
developed annual detrended Landsat NDVImax (NDVImax-dt) time series using

observations from a 100m radius area around each sampling location. We then
assessed the temporal correspondence between NDVImax-dt and each shrub RWI
chronology using Spearman’s correlations in a Monte Carlo uncertainty framework
(n= 103 simulations). Each simulation randomly perturbed both NDVImax and
shrub RWI data sets and utilized data from a random subset (90%) of years.

We assessed the spatial correspondence between median annual Landsat
NDVImax and ecosystem GPP across 11 eddy covariance flux towers located in
Arctic tundra of Greenland, Russia, and the USA (Supplementary Fig. 7c and
Supplementary Table 12). Four of the flux towers were part of the Arctic Observing
Network104,105 and seven of the flux towers were part of the FLUXNET Network
(FLUXNET2015 Tier 1)106. Annual ecosystem GPP was estimated at each flux
tower by first measuring net ecosystem exchange (NEE) and then partitioning NEE
into GPP and ecosystem respiration (Reco) using modeled relationships between
Reco and night-time temperatures (NEE=GPP− Reco)107. We acquired annual
gap-filled estimates of GPP from FLUXNET and half-hourly gap-filled estimates of
GPP from AON that we aggregated to an annual time step (g Cm−2 year−1). We
generated annual Landsat NDVImax time series for each flux tower using summer
observations from a 100 m radius area around each flux tower. We then computed
median annual NDVImax and GPP by site and assessed their covariation using rs in
a Monte Carlo uncertainty framework (n= 103 simulations). Each simulation
randomly perturbed both NDVImax and GPP data sets and utilized data from a
random subset (90%) of years.

Data handling and visualization. We acquired Landsat data using Python74 and
generated maps using ArcGIS (Redlands, CA), but otherwise handled and visua-
lized data using R86 with a suite of add-on packages. Specifically, we processed
geospatial data using raster108, rgdal109, and maptools110. Furthermore, we handled
data using data.table111, dplyr112, and tidyr113, and visualized data using lattice114,
ggplot2115, and ggpubr116. All package versions are provided in the Reporting
summary.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this paper.

Data availability
The data that support the findings of this study are available from the following
sources: The United States Geologic Survey Landsat 5, 7, and 8 Surface Reflectance
data are available from Google Earth Engine. The CRU TS4.01: Climatic Research
Unit (CRU) Time Series (TS) version 4.01 data are available from the Center for
Environmental Data Analysis with identifier https://doi.org/10.5285/
58a8802721c94c66ae45c3baa4d814d0. The Terrestrial Air Temperature: 1900–2017
Gridded Monthly Time Series (V 5.01) data are available from the University of
Delaware, http://climate.geog.udel.edu/~climate/html_pages/download.html#T2017.
The Land-Ocean Temperature Index ERSSTv5 data are available from the NASA
Goddard Institute for Space Studies, https://data.giss.nasa.gov/pub/gistemp/GHCNv3/
gistemp1200_ERSSTv5.nc.gz. The Monthly Land+Ocean Average Temperature with
Air Temperatures at Sea Ice data are available from Berkeley Earth. The HadCRUT4
hybrid with UAH data are available from the University of York, https://www-users.
york.ac.uk/~kdc3/papers/coverage2013/had4_short_uah_v2_0_0.nc.gz. The
TerraClimate data are available from the University Corporation for Atmospheric
Research, http://thredds.northwestknowledge.net:8080/thredds/catalog/
TERRACLIMATE_ALL/data/catalog.html. The Arctic Circumpolar Distribution and
Soil Carbon of Thermokarst Landscapes (2015) data are available from the Oak Ridge
National Laboratory with identifier https://doi.org/10.3334/ORNLDAAC/1332. The
ESA Climate Change Initiative Permafrost extent, active layer thickness, and ground
temperature data are available from the Center for Environmental Data Analysis with
identifiers https://doi.org/10.5285/c7590fe40d8e44169d511c70a60ccbcc, https://doi.
org/10.5285/1ee56c42cf6c4ef698693e00a63795f4, and https://doi.org/10.5285/
c7590fe40d8e44169d511c70a60ccbcc, respectively. The ESA Climate Change Initiative
Land cover data are available from the Catholic University of Louvain, http://maps.
elie.ucl.ac.be/CCI/viewer/download.php. The MODIS/Terra+ Aqua Burned Area
Monthly L3 Global 500m data are available from the Land Processes Distributed
Active Archive Center, https://lpdaac.usgs.gov/products/mcd64a1v006/. The
TanDEM-X 90m Digital Elevation Model data are available from the German
Aerospace Center, https://geoservice.dlr.de/web/dataguide/tdm90/#access. The
graminoid productivity data are available upon reasonable request from G.G. The
shrub ring-width data are available from the (1) Polar Data Catalog with identifier,
https://www.polardata.ca/pdcsearch/PDCSearchDOI.jsp?doi_id=12131, (2) the Arctic
Data Center with identifiers https://doi.org/10.18739/A28Q18 and https://doi.org/
10.18739/A24X0Q, and (3) the National Center for Environmental Information with
identifiers https://www.ncdc.noaa.gov/paleo/study/29754, https://www.ncdc.noaa.gov/
paleo/study/29752, and https://www.ncdc.noaa.gov/paleo/study/29753. Additional
shrub ring-width data are available upon reasonable request from B.C.F. and B.V.G.
The gross primary productivity data are available from the Arctic Observing Network,
http://aon.iab.uaf.edu/data_access. Additional primary productivity data are available
from Fluxnet with identifiers https://doi.org/10.18140/FLX/1440182, https://doi.org/
10.18140/FLX/1440067, https://doi.org/10.18140/FLX/1440073, https://doi.org/
10.18140/FLX/1440181, https://doi.org/10.18140/FLX/1440222, https://doi.org/
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10.18140/FLX/1440224, and https://doi.org/10.18140/FLX/1440223. The Landsat data
sets generated as part of this project will be publicly archived with the Oak Ridge
National Laboratory Distributed Active Archive Center for Biogeochemical Dynamics.

Code availability
All code from this analysis is publicly archived on the lead authors GitHub.
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